1. Consider the equation

$$x'''' + ax = 0 \tag{1}$$

on the real line **R**, where $a \in \mathbf{C}$ is a constant coefficient.

- (a) Find all values of a (real or complex) for which all solutions of the equation are bounded in **R**. (Recall that a function $f: \mathbf{R} \to \mathbf{C}$ is said to be bounded of if there exists $C \geq 0$ such that $|f(t)| \leq C$ for each $t \in \mathbf{R}$.)
- (b) Find all values of a (real or complex) for which there exists at least one solution x of the equation which is bounded in \mathbf{R} but does not vanish identically.

Solution:

The characteristic polynomial of the equation is

$$\lambda^4 + a = 0. (2)$$

Assume first that $a \neq 0$. Then equation (2) has four roots

$$\lambda_1 = \alpha, \ \lambda_2 = i\alpha, \ \lambda_3 = i^2\alpha, \ \text{ and } \ \lambda_4 = i^3\alpha,$$
 (3)

where α is any number with $\alpha^4 + a = 0$. The general solution of (1) is

$$x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} + C_3 e^{\lambda_3 t} + C_4 e^{\lambda_4 t}.$$

$$\tag{4}$$

If all solutions are bounded, then so must be the four functions $e^{\lambda_j t}$, j=1,2,3,4. This means that $\operatorname{Re} \lambda_j = 0$, j=1,2,3,4. However, the four numbers λ_j form a square in the complex plane and hence cannot all lie on the imaginary line unless $\alpha=0$ in which case also a=0. Therefore for no $a\neq 0$ the equation can satisfy (a). To satisfy (b) at least one of the λ_j must be on the imaginary axis. But then $\lambda_j^4 > 0$ and hence $a=-\lambda_j^4 < 0$. Vice versa, if a<0 then the root $i\sqrt[4]{-a}$ is on the imaginary axis. We see that (b) is satisfied for $a\neq 0$ if and only if a<0.

It remains to settle the case a = 0. In this case the general solution is

$$C_1 + C_2 t + C_3 t^2 + C_4 t^3 (5)$$

and we see that there are unbounded solutions (such as x(t) = t) as well as bounded solutions which do not vanish identically (such as x(t) = 1).

Summarizing, we see that there is no $a \in \mathbf{C}$ for which all solutions are bounded, and bounded solutions which do not vanish identically exist if and only if $a \le 0$.

2. Let
$$x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}$$
 be a solution of the system

$$x'_1 = -2x_1 + x_3,$$

$$x'_2 = -2x_2 + x_1,$$

$$x'_3 = -2x_3 + x_2,$$

with $x_1(0) = 1$, $x_2(0) = 2$, and $x_3(0) = 3$. Find $\lim_{t\to\infty} x(t)$.

Solution:

The characteristic polynomial of the system is

$$p(\lambda) = \det \begin{pmatrix} -2 - \lambda & 0 & 1\\ 1 & -2 - \lambda & 0\\ 0 & 1 & -2 - \lambda \end{pmatrix} = (-2 - \lambda)^3 + 1.$$
 (6)

The equation $p(\lambda) = 0$ can be rewritten as $(2 + \lambda)^3 = 1$ which means that we have three roots λ_j given by

$$\lambda_j = -2 + \zeta_j \ , \quad j = 1, 2, 3 \,,$$
 (7)

where ζ_j are the three roots of the equation $z^3 = 1$. The ζ_j all lie on the unit circle, and hence

Re
$$\lambda_j \le -1$$
, $j = 1, 2, 3$. (8)

Therefore all solutions of our system must approach zero as $t \to \infty$. This applies also to our particular solution, and hence

$$\lim_{t \to \infty} x(t) = 0. \tag{9}$$

3. *Let*

$$A = \left(\begin{array}{cc} -1 & 2\\ 2 & -4 \end{array}\right).$$

Compute the matrix e^{tA} .

Solution:

We note the matrix is symmetric and therefore it must become diagonal in a suitable orthogonal basis. The characteristic polynomial is $p(\lambda) = \lambda(\lambda+5)$, the eigenvalues are $\lambda_1 = 0, \lambda_2 = -5$, the corresponding eigenvectors are respectively $x^{(1)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $x^{(2)} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$. The transition matrix mapping the canonical basis to the basis $x^{(1)}$, $x^{(2)}$ is the matrix $P = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$, its inverse is $P^{-1} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, and we have

$$A = P \begin{pmatrix} 0 & 0 \\ 0 & -5 \end{pmatrix} P^{-1}. \tag{10}$$

Therefore

$$e^{tA} = P \begin{pmatrix} 1 & 0 \\ 0 & e^{-5t} \end{pmatrix} P^{-1} = \frac{1}{5} \begin{pmatrix} 4 + e^{-5t} & 2 - 2e^{-5t} \\ 2 - 2e^{-5t} & 1 + 4e^{-5t} \end{pmatrix}.$$
 (11)